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Abstract. Zirconia aerogels are made of connected fractal clusters composed of small crystalline
particles. When heated at a low temperature (i.e. 0.13 times the melting temperature), the mass
transport process which predominantly occurs is surface diffusion. Due to the local character of
surface diffusion, fragmentation appears in the sample during thermal annealing. This particular
evolution of the structure is numerically analysed and experimentally studied by small-angle
x-ray scattering.

1. Introduction

Aerogels are dry gel networks made by supercritical extraction of the pore liquid from a gel,
which exhibit a fractal structure between two characteristic lengths. Indeed an aerogel is made
of a framework of connected fractal clusters. The size of the clusters is the upper fractal limit.
Each of these clusters is composed of particles. The mean size of these particles represents
the lower limit of the fractal domain.

Studies on fragmentation of aerogels are very rare. Up to now, there have only been works
on two-dimensional fractal aggregates [1,2]. This shows a different behaviour to silica aerogels
when heated. Indeed, the matter transport phenomena which occur are, at low temperature,
surface diffusion and evaporation–redeposition [3], and these matter transport phenomena
lead generally to fragmentation of the whole of a structure which is heated. We present
here a numerical approach to this fragmentation phenomenon and we compare the results to
experimental small-angle scattering data on zirconia aerogels.

Experimentally, we investigated the early stage of structural evolution in fractal cryst-
alline matter with small-angle x-ray scattering (SAXS) measurements. The material used is a
zirconia (ZrO2) aerogel prepared by supercritical drying of wet gels made from zirconium n-
propoxide, acetylacetone, n-propanol and water. It has a well established hierarchical structure
made of connected mass fractal clusters resulting from the aggregation of small zirconium oxide
particles. Moreover, the primary units are crystallized in the tetragonal zirconia form and each
particle is a single crystal [4]. The experiments carried out here consist in a thermal treatment
at 38 ◦C, a very low temperature (0.13Tf ) as compared to the zirconia melting temperature
(Tf = 2700 ◦C). In view of the crystalline nature of the material, of the low temperature used
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and of the very small size of the particles, the expected mass transport mechanism is obviously
surface diffusion [3].

In sections 2 and 3, we shall present the experimental method and numerical model
necessary to characterize the structure of zirconia aerogels during surface diffusion restruct-
uring. In section 4, results are given. In section 5, a discussion on our results is given which
focus on the interpretation of the SAXS intensity curves and on the fragmentation effect.
Finally, in section 6, we shall give our conclusions.

2. Experimental procedure

To prepare the zirconia precursor gels, we used the zirconium n-propoxide, n-propanol,
acetylacetone (acacH) and water system [5]. The zirconium n-propoxide concentration
and the hydrolysis and complexing ratios were C = [Zr(OC3H7)4] = 0.25 mol l−1,
W = [H20]/[Zr(OC3H7)4] = 10 and R = [acacH]/[Zr(OC3H7)] = 0.7 respectively. In
order to obtain an aerogel, the solvent was evacuated by supercritical drying of the alcogel in
an autoclave in presence of n-propanol (T = 270 ◦C, P = 5.52 MPa).

The aerogel was transparent with an initial macroscopic density of 0.22. In the untreated
aerogel x-ray diffraction pattern, the Bragg peaks were very broad and showed that the primary
units of the structure were crystallized in the zirconia tetragonal form, in agreement with TEM
experiments [5].

For time–temperature-dependent investigations, i.e. on surface diffusion restructuring,
aerogel slices were directly put in an oven held at 350 ◦C. The samples were removed for
analysis after the desired time intervals.

In order to study the structure of our material, we used an original SAXS experimental
set-up with a point collimation geometry. The Cu Kα1 incident beam was provided by a double
channel-cut germanium monochromator adapted to an 18 kW rotating-anode x-ray generator.

The scattered intensity was recorded using a linear position-sensitive detector. Two
sample–detector distances (0.5 m and 1.5 m) were successively used to cover a q-range from
0.04 to 4 nm−1 where q is the scattering vector q = 4πλ−1 sin(θ), λ the wavelength and 2θ
the scattering angle. Appropriate corrections for slit scattering, background scattering and
absorption effects were applied to the raw data.

We did not use here an absolute scale for the SAXS curves. Absolute scales are mainly
used to extract a specific surface or the molecular mass of polymers. In most cases, one is
interested in the curve shape and an absolute scale is hence not necessary. For our aerogels,
the transmission of the beam remains constant because we have no mass variation and no
dimensional shrinking, and the beam intensity always ‘sees’ the same quantity of matter. The
curves at different stages of heat treatment are then directly comparable.

3. Numerical procedure

3.1. Aerogel representation

To generate the aerogel structure, we have considered an on-lattice version of the DLCA
(diffusion-limited cluster–cluster aggregation) model in three dimensions, dealing with
identical particles in a cubic box [6]. The particles are modelled by small cubes of edge
length 2a0 always located on the lattice cells of dimension a0 of a cubic lattice. The particles
move inside a box of edge length 2La0, with periodic boundary conditions at the box edges,
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and their number N is such that the volume fraction c is set to the desired value:

c = Nv

8L3a3
0

(1)

where v is the volume of one particle of edge length 2a0 (this value of the edge length is valid at
time t = 0). For convenience, we will take in the following the value a0 = 1. The particles are
first randomly distributed in the box using a random sequential addition procedure, avoiding
double occupancy of the lattice cells. Then these particles are allowed to undergo random
walks on the lattice (jumping to nearest-neighbouring cells at random) and they irreversibly
stick when they try to overlap.

Aggregates of particles are also allowed to diffuse together with the individual particles
and to stick to other particles or to other aggregates. In this diffusive motion, the aggregates
are rigid and their diffusion constant is taken to be proportional to the inverse of their radius
of gyration.

When the initial packing fraction c is sufficiently large (larger than a threshold value cg
which tends to zero as the box size tends to infinity [7]), the final aggregate forms a gelling
network which extends from edge to edge in the box and can be described by a loose random
packing of connected fractal aggregates, of fractal dimension D = 1.8, whose mean size ξ
decreases as c increases according to the scaling law

ξ ∝ c−1/(3−D). (2)

3.2. Surface diffusion restructuring modelling

We need here an exact definition of the different kinds of particle that we shall discuss in
the following. Elementary particles are the cubes of edge length equal to 2a0 = 2 used for
the construction of the numerical aerogels. This choice of a factor 2 for the edge length is
arbitrary and represents a balance between the computer’s performance and the fragmentation
rate. It does not affect the final result, but the smaller this factor is the more precise the shape
of the internal structure is. When these elementary particles are divided into smaller pieces,
for numerical calculation purposes, one obtains subparticles. For experimental aerogel, this
term elementary particles retains the meaning commonly accepted. During the experimental
or numerical surface diffusion restructuring, these elementary particles will grow and become
particles. Finally we call the constituents of the numerical or experimental aerogel below
which scale the sample is no longer fractal particles: these particles are dense and may be
constituted by the merging of elementary particles or subparticles and no assumption regarding
the particle form is made. At time t = 0 (i.e. before restructuring has begun), particles and
elementary particles are the same.

We use here a Monte Carlo algorithm. Our method is similar to that employed, in two
dimensions, by Irisawa et al [2], but it is adapted to a three-dimensional cubic lattice. We
start with a numerical aerogel built as described in the previous section, i.e. on-lattice DLCA
aggregates in a cubic box with periodic boundary conditions. Each elementary particle of this
DLCA aerogel has an edge length equal to 2. This allows us to cut each elementary particle
into eight subparticles which have this time an edge length equal to 1 (remember that we took
a0 = 1). If we did not do this, the initial aggregate would break into pieces almost immediately
because for most parts of this fractal cluster the connection is by a single particle.

Each subparticle has a probabilityP of moving from its site on the lattice to an unoccupied
nearest-neighbouring site. This probability depends on the bonding energy of each subparticle,
i.e. on the number Ni of neighbours of the site occupied by the subparticle and on the number
Nf of neighbours of the unoccupied site, as follows:

P = exp[−A(Ni −Nf )] (3)
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where A = Eb/kT with Eb the energy per neighbour, k the Boltzmann constant and T the
temperature. In the particular case whereNf = 0 (corresponding to the subparticle ‘melting’,
i.e. undergoing a movement toward a site with no neighbour), the probability is

P = exp[−ANi − B] (4)

where B =  µ/kT with  µ the chemical potential gain associated with solidification
(i.e. − µ is the chemical potential associated with melting). B corresponds to evaporation–
condensation. Indeed, to leave the surface, a subparticle has to overcome a potential barrier
which is created by the bulk: the chemical potential corresponds to the energy of the bonding
of the melting subparticle to the bulk. For subparticles remaining on the aerogel structure,
the chemical potential is the same everywhere, so there is no difference between the chemical
potential at one site in the bulk and that at another site in the bulk, and hence the chemical
potential does not appear in the probabilities of moving for subparticles remaining on the
aerogel structure.

So, finally, at each Monte Carlo step the probabilities of moving for each subparticle are
computed and one move is chosen at random according to these probabilities.

3.3. Small-angle scattering intensity calculation

From single-scattering theory, the small-angle scattering intensity I (q), where q is the
scattering wave vector, is proportional to the square of the Fourier transform of the density
distribution in direct space [8, 9]. We introduce a density function δ(r) which is defined as
equal to 1 if the site centred at r is occupied by a subparticle and equal to 0 if not. Therefore,
the intensity shows the following proportionality:

I (q) ∝
∣∣∣∣
∑

r

δ(r) exp iq · r

∣∣∣∣
2

. (5)

As usual, we introduce a double sum to expand the square and, assuming isotropy, we average
over all the directions of q to get

I (q) ∝
∑
r1

∑
r2

δ(r1)δ(r2)
sin qr

qr
(6)

where

r = |r1 − r2|. (7)

Then transforming the double sum into a sum over the possible values for the distance r and
separating the r = 0 contribution from the others, we get

I (q) ∝
(

1 +
∑
r �=0

Fa(r)

)
sin qr

qr
(8)

where Fa(r) is the mean number of subparticles at a distance r from a given subparticle (the
on-lattice pair correlation function).

One has to note that formula (8) is an approximation to the real intensity curve I (q); the
smaller the subparticles, the better our approximation as noted previously in reference [10].
We are interested here in the evolution of the fractal regime in the SAXS curve. Since this
fractal regime is the same in structure as the total intensity [10], our computation can be applied
to our analysis of the aerogel structure.

One should remark that in the numerical calculations of the intensity, due to the Fourier
transform, the value of q is equivalent to 2π/l where l is the corresponding length scale.
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4. Experimental and numerical results

We first present the experimental results for the small-angle scattering intensity. The raw
aerogel SAXS curve shows a broad scattered intensity maximum at qm = 0.05 nm−1, an
intermediate power-law behaviour running over one decade in q with a slope of −2.3 and a
crossover between the fractal and the Porod regimes at about 2.6 nm−1. So, ZrO2 aerogel has
a well established structure made up of connected mass fractal clusters, with a size around
120 nm and an apparent fractal dimension of 2.3. These clusters result from aggregation of
small zirconium oxide particles with a high degree of crystallinity in the tetragonal zirconia
form. The sizes of these primary units determined by small-angle x-ray scattering and x-ray
diffraction are the same and about 2.5 nm. Each particle is a single crystal [3, 4].

Figure 1(a) represents the SAXS intensity for the experimental part of this work. The
intensity curves are plotted for several isothermal annealing durations ranging from 0.5 h to
231 h at 350 ◦C. Figure 1(b) represents also the small-angle scattering intensity, but this time
for the numerical part of our work. The following values of the parameters of the simulation
have been chosen: A = 20, B = 30, and the simulation box size was taken to be 100.
The value of A does not affect the final structure of the aerogel but only the duration of the
evolution. Meanwhile, the value of B affects the number of isolated particles in the final
sample: it represents a chemical potential value. In all of the following, the second stage of
thermal annealing was taken to be after 6 × 103 Monte Carlo steps and the nearly final stage
to be at 108 Monte Carlo steps.

The three intensity curves represent the three stages of thermal annealing, i.e. the three
different Monte Carlo durations of annealing. The small oscillations in the curves arise from
the discrete state of the subparticle positions. As can be seen, the intensities in the low-q
portions of the experimental and numerical SAXS curves do not change significantly, but
the intermediate- and large-q regions are appreciably modified. The extent of the fractal
regime is gradually reduced and vanishes and the Porod regime grows towards lower q-values.
Simultaneously, the intensity distribution in the intermediate region is significantly modified
since the scattered intensity increases whereas it decreases at higher q-values. A crossover
results from these two opposing behaviours and a narrow region of almost constant intensity
clearly appears around qcrossover = 1 nm−1, i.e. lcrossover = 2πa0.

One can remark that in figure 1(a) as well as in figure 1(b) the experimental curves and
the numerical ones immediately below the crossover show a sigmoidal shape. This sigmoidal
shape comes from the Rayleigh scattering of uniformly size-distributed particles, as we have
obtained numerically and certainly experimentally. For more details on this kind of small-angle
scattering behaviour, see [11, 12].

Figures 2(a) and 2(b) present a part of a simulation box for two stages of thermal annealing:
the initial stage and a stage near the end of the process, where there is almost no further evolution
in the internal structure. We have to add that the single subparticles which are disconnected
from the whole structure have a small Monte Carlo probability of moving, so their diffusion
is very slow. Hence the very final stage would be a group of large fragments with no single
disconnected subparticles. Unhappily, the computation time required to obtain this stage would
be too long, but the final results (such as the crossover and the sigmoidal shape of the small-
angle scattering curves) would not change. It is obvious that there is a fragmentation process.
There are several fragments which are no longer connected to the rest of the structure. Remark
that the different fragments do not fall apart: we did not add gravitation in our numerical
model. The experimental samples exhibited the same fragmentation phenomenon: after more
than 200 hours of thermal annealing, they became so fragile that a simple vibration could
break them into pieces. In order to characterize this fragmentation process, we performed a
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(a)

Figure 1. (a) Experimental SAXS intensity (I (q) in arbitrary units) as a function of q (in nm−1)
for different durations of surface diffusion annealing. A circle has been drawn around the crossover
region. The inset shows the curves offset for clarity. (b) Numerical small-angle scattering intensity
(I (q) in arbitrary units), for three different Monte Carlo time steps, as a function of q (in arbitrary
units). The solid line represents I (q) for the initial stage of thermal annealing, the dotted line shows
the second stage of annealing and the long-dashed line shows the almost-final stage of annealing.
A box has been drawn around the crossover region.

quantization of the size of the fragments. Figure 3 presents the size distribution of the particles
in the sample for the initial stage and for the almost-final stage of annealing. The number of
particles which have a size 2 is very important in the initial stage: this results from the DLCA
aggregation computation for which we have used elementary particles with an edge length
of 2. Then for the very final stage, this number of particles of size 2 would be near zero as
would be the number of single subparticles, but, as we did not compute the process until the
very end (equilibrium), small particles remain.

One has to remark that the number of particles which have a size 6 is almost constant. In
view of this, we carried out an averaging over the size of all particles for the final stage and
we found a mean size equal to 6.64. The same calculation was done for the initial stage and
the mean size for particles was found to be equal to 2.39.
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(b)

Figure 1. (Continued)

5. Discussion

Surface diffusion is a local transportation of matter. The matter moves from the locations
where the curvature gradient is large to the locations where the curvature gradient is small.
From an experimental point of view, matter has a mean transportation length which is very
small. Similarly, in our simulation model, matter (i.e. subparticles) moves from one site to
its very nearest neighbours. So the modelling of the process respects the local character of
surface diffusion.

Two previous numerical simulations of this sort of matter transport have been carried out.
The first, by Irisawa et al [2], used a model very similar to ours. During thermal relaxation, they
observed fragmentation on two-dimensional fractal aggregates. The second simulation was
done by Thouy et al [1] by resolving the diffusion equation on the contour of two-dimensional
fractal aggregates with respect to the mass conservation. This diffusion equation takes account
of the local curvature and hence appears as

∂z

∂t
= C ∂

2K

∂s2
(9)

where K is the local curvature, z is the local transverse displacement, s is the curvilinear
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(a)

Figure 2. (a) Geometric representation of the internal structure of a DLCA aerogel before thermal
annealing. This representation is 1/8 of the simulation box that we used in our calculations.
(b) Geometric representation of the internal structure of a DLCA aerogel at the almost-final stage
of surface diffusion annealing. Note the presence of several fragments.

coordinate and C is a constant which is given as

C = .4
0

(kT /Dsγ )
(10)

where .0 is the typical size of the diffusing particle, k is the Boltzmann constant, Ds is the
surface self-diffusion coefficient and γ is the surface tension (the last two being assumed to
be isotropic). Equation (9) is commonly called the Mullins equation [13]. Thouy et al solved
this equation on the contour of two-dimensional fractal aggregates of different sizes and for
different fractal dimensions. Once again, they observed fragmentation.

Unlike these two previous studies, our modelling takes place in a three-dimensional space
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(b)

Figure 2. (Continued)

and deals with connected fractal aggregates in a cubic box. The dimensions of our simulation
box (with periodic boundary conditions) remain constant throughout the simulation. So there
is no shrinking in the size of the numerical aerogel. In the meantime, the low-q range of the
small-angle scattering, which is sensitive to the size of the connected fractal clusters composing
the aerogel, remains also almost constant during the different Monte Carlo steps.

The size of the particles in the numerical aerogel is calculated by counting the number of
subparticles in the sample, which form a dense packing on the three-dimensional lattice. It is
interesting to see that the numerical value of q for the crossover, on the calculated small-angle
scattering intensity curve, is approximately equal to 1, so the characteristic length associated
with this q is equal to 2π and the mean size of the particles or fragments as they are isolated
fluctuates around 6.64 when there is no more evolution in the internal structure of the aerogel,
i.e. for long durations of thermal annealing.
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Figure 3. Numerical size distribution of the particles at the initial stage of the annealing and at the
almost-final stage of the annealing. The numerical results are in units of a0.

Moreover, the number of particles which have an edge length equal to 6 remains constant
throughout the thermal relaxation: for the initial-stage size distribution and for the almost-
final-stage size distribution, the number of fragments or particles with an edge length equal to
6 is roughly the same. This is, with the small-angle scattering curves, there is another way to
characterize the crossover: the amount of matter on this length scale remains constant during
thermal annealing. In the size distribution of fragments, one may see that the large fragments
have a tendency to increase in size while the small fragments reduce in number.

The space distribution of matter is roughly the same for the almost-final stage of the
thermal annealing as for the initial stage; this is due to the local nature of surface diffusion.
As in reference [1], small-scale details of the internal structure tend to disappear. The
inner surface is smoothed. The scattered intensity of the small-angle scattering curves
decreases for q lower than qcrossover as the quantity of matter on the length scale . such that
2π/. < qcrossover decreases with time: the remaining particles attract all small subparticles
in their neighbourhood; no more structures of length scale greater than . remain. In fact, this
length scale . may be considered as the size of the particles or fragments at the final stage.

So, finally, for the small-angle scattering intensity curve, it is no longer appropriate to
speak of a fractal slope. There is no longer a power law to express the curve modifications in
the intermediate-q range. The general pattern of the space distribution of matter remains much
the same but the local structure radically changes due to surface diffusion. All small-scale
details are removed and all large-scale structures are contracted in isolated fragments.
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All of this discussion is valid for the numerical part of our work but is also an explanation
for the experimental results and phenomena.

Moreover, from an experimental point of view, the non-moving of the maximum-intensity-
peak location means that the long-range correlations remain constant during annealing. The
direct corollary is that there is no shrinking of the samples. On the other hand, the particle
growth, obviously demonstrated both by SAXS and x-ray diffraction experiments, indicates
that a matter flow has occurred. These two behaviours agree with the surface diffusion
mechanism, which is well known to operate with or without a very low densification [3].

6. Conclusions

We have presented an experimental work on surface diffusion restructuring of zirconium oxide
aerogels. The experimental results have been interpreted by way of a numerical model for the
surface diffusion mobility as well as for the structure of zirconia aerogels. The particular
features of the SAXS intensity curves have been explained by the computation of small-angle
intensity curves based on the numerical results for the structure during thermal annealing.
This allowed us to explain the crossover between SAXS intensity curves for different times by
systematically studying the geometrical characteristics of the fragments which appear during
the isothermal heat treatment. As a conclusion, we can say that there is a mean size of the
fragments which corresponds to this crossover. Small-scale details are removed by surface
diffusion but, at the length scale given by the crossover, the quantity of matter remains constant
throughout the annealing experiments.

References

[1] Thouy R, Olivi-Tran N and Jullien R 1997 Phys. Rev. B 56 5321
[2] Irisawa T, Uhawa M and Saito Y 1995 Europhys. Lett. 30 139
[3] Wang J C 1990 Metall. Trans. A 21 305

Wang J C 1991 Concise Encyclopedia of Advanced Ceramic Materials ed R J Brook (Oxford: Pergamon)
[4] Lecomte A, Blanchard F, Dauger A, Silva M C and Guinebetiere R 1998 J. Non-Cryst. Solids 225 120
[5] Silva M C 1996 PhD Thesis Limoges University
[6] Jullien R and Botet R 1987 Aggregation and Fractal Aggregates (Singapore: World Scientific)
[7] Hasmy A, Anglaret E, Foret M, Pelous J and Jullien R 1994 Phys. Rev. B 50 1305
[8] Guinier A and Fournet J 1955 Small Angle Scattering of X-Rays (New York: Wiley–Interscience)
[9] Feigin L and Svergun D 1987 Structure Analysis by Small Angle X-Ray and Neutron Scattering (New York:

Plenum)
[10] Olivi-Tran N and Jullien R 1995 Phys. Rev. B 52 258
[11] de la Rosa N, Gago-Duport L and Esquivas L 1995 J. Non-Cryst. Solids 192+193 534
[12] Emmerling A, Gross J, Gerlach R, Goswin R, Reichenauer G, Fricke J and Haubold H-G 1990 J. Non-Cryst.

Solids 125 230
[13] Mullins W W 1957 J. Appl. Phys. 28 333


